
Appendix LL

Algebraic Solution of the Oscillator

The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction.

Sidney Coleman

We now return to the harmonic oscillator using operator methods to obtain the wave functions and the energy. In Chapter 12,
the harmonic oscillator is used as a model for the quantum mechanic treatment of the electromagnetic field. An expression
for the energy of the harmonic oscillator is obtained by adding the kinetic energy p2/2m to the general expression for the
potential energy of the oscillator provided by Eq. (I.4) to obtain

E = 1

2m
p2 + 1

2
mω2x2.

Following the procedure described in Chapter 3, the energy operator is obtained by replacing the momentum p and the
position x in this last equation by the operators, p̂ and x̂, respectively. We obtain

Ĥ = 1

2m
p̂2 + 1

2
mω2x̂2. (LL.1)

We recall that themomentumoperator is given by Eq. (DD.1) and the position operator x̂ is equal to the position coordinate x.
To see how we might find the wave functions for the harmonic oscillator by algebraic methods, we first note that if

the momentum operator p̂ was an ordinary number, we could factor the Hamiltonian operator for the oscillator given by
eq. (LL.1) as follows:

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 = �ω

√
mω

2�

(
x̂− ip̂

mω

) √
mω

2�

(
x̂+ ip̂

mω

)
. (LL.2)

This factorization may readily be confirmed using the identity

(a− ib)(a+ ib) = a2 + b2.

Such a factorization of the Hamiltonian cannot be carried out because the momentum and the position are represented in
quantum mechanics by operators, and the order of two operators cannot generally be interchanged as can the products of
numbers.

The effect of changing the order of the momentum and position operators can be determined by using the explicit form
of the momentum operator given by Eq. (DD.1). The product of the momentum and position operators is

p̂x̂ = −i�
d

dx
x.
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We can study the properties of this operator product by allowing it to act on an arbitrary wave function ψ(x) giving

−i�
d

dx
xψ = −i�

d

dx
(xψ) .

The derivative of (xψ) on the right can now be evaluated using the ordinary product rule to obtain

−i�
d

dx
(xψ) = −i�ψ − i�x

dψ

dx
.

Bringing the last term on the right-hand side of the above equation over to the left-hand side and multiplying the whole
equation through with −1, we obtain (

−i�x
d

dx
+ i�

d

dx
x

)
ψ = i�ψ .

Since this last equation is true for any arbitrary function ψ , we can write it as an operator identity

−i�x
d

dx
+ i�

d

dx
x = i�

or

x̂p̂− p̂x̂ = i�. (LL.3)

The expression on the left-hand side of this last equation involving the position and momentum operators, x̂ and p̂, may be
written more simply using the idea of a commutator. The commutator of two operators, A and B, is defined by the following
equation:

[A,B] = AB− BA. (LL.4)

Using this notation, Eq. (LL.3) becomes

[x̂, p̂] = i�. (LL.5)

Even though the Hamiltonian operator (LL.1) cannot be factored as simply as indicated in Eq. (LL.2), we would like to
evaluate the product of the “factors” occurring in this equation. For this purpose, we define the two operators,

a† =
√
mω

2�

(
x̂− ip̂

mω

)
(LL.6)

and

a =
√
mω

2�

(
x̂+ ip̂

mω

)
. (LL.7)

We consider now the operator product

�ωa†a, (LL.8)

which is equal to the expression appearing after the second equality in Eq. (LL.2).
Using the commutation relation (LL.5), the operator product (LL.8) can be written as

�ωa†a = 1

2
mω2

(
x̂2 + p̂2

m2ω2 + i

mω
[x̂, p̂]

)

= p̂2

2m
+ 1

2
mω2x̂2 − 1

2
�ω. (LL.9)

The first two terms appearing after the second equality can be identified as the oscillator Hamiltonian Ĥ given by Eq. (LL.1).
Bringing the last term on the right-hand side of Eq. (LL.9) over to the left-hand side and then interchanging the two sides
of the equation, we obtain

Ĥ = �ω

(
a†a+ 1

2

)
. (LL.10)

This equation may be regarded as the corrected version of the naive factorization (LL.2).
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We note that the order of the operators a† and a in Eq. (LL.9) is important. The same line of argument with the operators,
a† and a, interchanged leads to the following equation:

�ω aa† = p̂2

2m
+ 1

2
mω2x̂2 + 1

2
�ω. (LL.11)

We can obtain a commutation relation for the operators a and a† by subtracting Eq. (LL.9) from Eq. (LL.11) giving

[a, a†] = aa† − a†a = 1. (LL.12)

The commutation relation between a and a† may be used to derive a relation between successive eigenfunctions of the
oscillator Hamiltonian. Suppose that the wave function ψ is an eigenfunction of the Hamiltonian (LL.10) corresponding to
the eigenvalue E. Then ψ satisfies the following equation:

�ω

(
a†a+ 1

2

)
ψ = Eψ . (LL.13)

Multiplying this equation from the left with a† gives

�ω

(
a†a†a+ 1

2
a†

)
ψ = Ea†ψ .

The first term on the left-hand side of this last equation may be rewritten by using the commutation relation (LL.12) to
replace a†a with aa† − 1 giving

�ω

(
a†a− 1 + 1

2

)
a†ψ = Ea†ψ .

Finally, we take the second term on the left-hand side over to the right-hand side to obtain

�ω

(
a†a+ 1

2

)
a†ψ = (E + �ω)a†ψ .

Hence, the wave function a†ψ is an eigenfunction of the oscillator Hamiltonian corresponding to the eigenvalue E + �ω.
We shall thus refer to a† as a raising operator or a step-up operator. It transforms an eigenfunction of Ĥ into an eigenfunction
corresponding to the next higher eigenvalue. In the same way, the operator amay be shown to be a lowering operator or step-
down operator which transforms an eigenfunction of Ĥ into an eigenfunction corresponding to the next lower eigenvalue.
The effect of the raising and lowering operators on the states of the Harmonic oscillator is illustrated in Fig. LL.1.

By repeatedly operating on an eigenfunction of the harmonic oscillator with the lowering operator, one can produce
eigenfunctions corresponding to lower and lower eigenvalues. Allowed to continue indefinitely, this process would
eventually lead to energy eigenvalues less than zero. However, one may show that the harmonic oscillator, which has a
potential energy that is positive everywhere, cannot have a bound state with a negative eigenvalue.

The lowering process must end in some way. This can only happen by the product of the lowering operator a and the
wave function producing a zero function. Denoting the lowest bound state by ψ0, we must have

aψ0 = 0. (LL.14)
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FIGURE LL.1 The effect of the raising and lowering operators on the states of the harmonic operator.
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Since every term in an eigenvalue equation depends upon the eigenfunction, an eigenvalue equation will always be satisfied
by a function which is equal to zero everywhere.

The energy of the lowest state can be determined by substituting the function ψ0 into Eq. (LL.13) to obtain

�ω

(
a†a+ 1

2

)
ψ0 = E0ψ0.

Since aψ0 = 0, the first term on the left-hand side of this equation must be equal to zero. We must have

E0 = 1

2
�ω.

A state of the oscillator with �ω more energy can be obtained by operating with the operator a† upon the lowest state, and
this process can be continued producing states with greater and greater energy. The energy levels of the oscillator are thus
given by the formula

E = �ω(n+ 1/2).

Equation (LL.14) can be solved for the wave function corresponding to the lowest eigenvalue. More energetic states can
then be obtained by operating upon ψ0 with the step-up operator a†. Substituting Eq. (LL.7) into Eq. (LL.14), we obtain(

x̂+ ip̂

mω

)
ψ0 = 0.

This equation may be written as a differential equation by using the explicit expression for the momentum operator given
by Eq. (DD.1) to get

�

mω

dψ0

dx
+ xψ0 = 0

or
dψ0

ψ0
= −mω

�
x dx.

Integrating this last equation, we obtain

lnψ0 = −mω

2�
x2 + lnA0,

where we have denoted the arbitrary integration constant as lnA0. Taking the term lnA0 over to the left-hand side of the
equation and using the properties of the natural logarithm, we obtain

ln

(
ψ0

A0

)
= −mω

2�
x2.

The lowest eigenfunctionψ0 can then be obtained by taking the anti-logarithm of both sides of the equation and rearranging
terms to get

ψ0 = A0e(−mω/2�)x
2
. (LL.15)

All of the results obtained in the section have been obtained before by solving the Schrödinger equation for the oscillator.
The energy and the wave function of the oscillator are given by Eqs. (2.44) and (2.45). We leave as an exercise to use the
methods developed in this section to obtain the wave functions of the first two excited states of the oscillator. The algebraic
solution of this problem provides its own insights into the oscillator. Since the harmonic oscillator can only vibrate with
a single frequency, all of its states can be regarded as excitations of a single state. The first excited state of the oscillator
corresponds to a state for which the oscillator has absorbed a single photon with energy �ω, and higher excited states
correspond to states for which the oscillator has absorbed additional photons. This way of thinking about the oscillator will
be used in Chapter 12 as a model for the quantization of the electromagnetic field.


